Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
LLM Engineer's Handbook

You're reading from   LLM Engineer's Handbook Master the art of engineering large language models from concept to production

Arrow left icon
Product type Paperback
Published in Oct 2024
Publisher Packt
ISBN-13 9781836200079
Length 522 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Paul Iusztin Paul Iusztin
Author Profile Icon Paul Iusztin
Paul Iusztin
Maxime Labonne Maxime Labonne
Author Profile Icon Maxime Labonne
Maxime Labonne
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Understanding the LLM Twin Concept and Architecture 2. Tooling and Installation FREE CHAPTER 3. Data Engineering 4. RAG Feature Pipeline 5. Supervised Fine-Tuning 6. Fine-Tuning with Preference Alignment 7. Evaluating LLMs 8. Inference Optimization 9. RAG Inference Pipeline 10. Inference Pipeline Deployment 11. MLOps and LLMOps 12. MLOps Principles 13. Other Books You May Enjoy
14. Index

Criteria for choosing deployment types

When it comes to deploying ML models, the first step is to understand the four requirements present in every ML application: throughput, latency, data, and infrastructure.

Understanding them and their interaction is essential. When designing the deployment architecture for your models, there is always a trade-off between the four that will directly impact the user’s experience. For example, should your model deployment be optimized for low latency or high throughput?

Throughput and latency

Throughput refers to the number of inference requests a system can process in a given period. It is typically measured in requests per second (RPS). Throughput is crucial when deploying ML models when you expect to process many requests. It ensures the system can handle many requests efficiently without becoming a bottleneck.

High throughput often requires scalable and robust infrastructure, such as machines or clusters with multiple...

lock icon The rest of the chapter is locked
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
LLM Engineer's Handbook
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at £16.99/month. Cancel anytime
Modal Close icon
Modal Close icon